

Topcon Tools

Processing RTK Data

Application Guide

Topcon Tools Processing RTK Data Application Guide

Part Number 7010-0928 Rev A

©Copyright Topcon Positioning Systems, Inc. April, 2009

All contents in this manual are copyrighted by Topcon. All rights reserved. The information contained herein may not be used, accessed, copied, stored, displayed, sold, modified, published, or distributed, or otherwise reproduced without the expressed written consent from Topcon.

ECO#3528

Table of Contents

How to Process RTK Data	.1
Creating TopSURV Job in Topcon Tools	1
How to Create a Geoid for Local Area	2
How to Import Control Points to the Job	4
How to See Imported Points on Google Earth	7
How to Create Background Map for Work Area	7
How to Create a User's Layer	10
How to Create User's Codes	12
How to Export a Topcon Tools Job to	
TopSURV Job	14
How to Export a TopSURV Job to Controller	14
Importing, Viewing and Editing	
TopSURV Job in Topcon Tools	15
How to Import a TopSURV Job to Computer	15
How to Add a Geoid File to Topcon Tools Job	17
Viewing Collected Data	18
How to Estimate Precision of Data	20
Viewing and Editing Localization	21
Editing Antenna Height	23
How to Recalculate the Coordinates	24
Reporting Data	24
Export to Coordinate File	26

Notes:

How to Process RTK Data

TopSURV software allows a user to collect and save Real Time Kinematic (RTK) data to a job on Topcon Controllers with Windows CE and/or Controllers with Windows Mobile OS. TopSURV jobs have 'tsj'extention. ActiveSync® software running on a computer is needed to transfer jobs between the controllers and the computer. ActiveSync® is a free software from Microsoft® that establishes a connection between a computer (with operating system Windows XP) and an external device. If the user's computer operates under Windows Vista, ActiveSync is not needed. A connection between the computer and an external device with Windows CE/Windows Mobile will be automatically established after connecting your device to your computer via USB or COM ports.

Working with RTK data in Topcon Tools can be divided into two stages:

- creating a job in Topcon Tools and exporting this job to a Controller
- importing the job with field data from a controller to a computer, viewing and editing data, exporting to any desired file format.

To import/export, view and edit RTK data in Topcon Tools, only

RTK module has to be activated:

Creating TopSURV Job in Topcon Tools

There are two ways to create a TopSURV job:

- directly in Controller
- using Topcon Tools

If a user uses Topcon Tools for creating a TopSURV job, he can prepare a job to collect field data in TopSURV. This tsj job will contain:

- set of control points,
- code library,
- set of layers,

and the following separate files for this job:

- a georeferenced background image for work area,
- the desired geoid file for work area.

It is good to use Topcon Tools for selecting the coordinate system, preparing the geoid of minimal size, georeferencing the background image and importing the necessary set of points. Generally, for preparing a TopSURV job, Topcon Tools is used only once when creating the initial job for a local region.

How to Create a Geoid for Local Area

To save the internal memory of the Topcon Controller, we recommend creating the geoid file for the local region. For this procedure the user has to know the coordinates of boundary points of the work area and to have the original geoid file which is used for this area. As an example, let us create the geoid for the following area,

using g2003u07.bin as the base geoid model.

To create the geoid file for local work area, do the following:

1. Run Topcon Link (this is a free Topcon software),

2. Click File -> Convert Files

% 1	Торсо	on Lin	k			
	Edit	View	Add	Process	Window	Hel
0	pen Fi	le			Ctrl+	0
S	ave Fil	е			Ctrl+	S
S	ave As				Alt+0	Itrl+:
In	nport l	rom De	vice		Shift	+F3
E:	xport I	o Devi	:e		Shift	+F4
C	onverl	Files			F5	

3. Click the *Add files* button in the *Convert Files* window, select the file format '*USA 99 and 2003 Geoid*', navigate to the location of "g2003u07.bin" file, select this file and click the *Open* button:

Source file path		Source file type	Destination file name	U
Add files	😭 Open			
estination format Overwrite existing Advanced conver	Look in: g03 g2003u01.bin g2003u02.bin g2003u03.bin	Geoid2003 g2003u04.bin g2003u05.bin g2003u06.bin g2003u06.bin g2003u07.bin	置 g2003u08.bin	•
De Cor	File name:	2003u07.bin		

4. In the *Destination file name* field, enter the name of created geoid file (for example: MY_GEOID.gff):

Source file path	Source file type	1	Destination file name
D:\Geoids\Geoid2003\g2003u07	USA 99 and 2003 Geoid - Geoid F	ile.	MY_GEOID.gff

5. Specify positions for the points limiting the use of this geoid

model:	Minimum Latitude Maximum Latitude Minimum Longitude	40*00'00.00000N 41*00'00.00000N 82*30'00.00000W
	Maximum Longitude	83*30'00.00000W

6. Press the button RE Convert

to start creating the local geoid

7. If the file was created successfully, the *File Status* field will display:

8. Click OK.

This geoid file is ready for use in TopSURV. Copy the file into the Controller with TopSURV.

How to Import Control Points to the Job

It is useful to have in the TopSURV job true coordinates of the base station in the given coordinate system, and also coordinates of the control points in a local coordinate system to perform localization directly in TopSURV job.

Topcon Tools allows importing a text coordinate file that does not contain information about the coordinate system. These files contain ONLY the values of coordinates. To import the point coordinates in the corresponding coordinate system, the user has to:

- know this coordinate system or projection,
- set this coordinate system / projection as current (in the *Job Configuration* window) before importing.

To import control points to the job, do the following:

- 1. Run Topcon Tools
- 2. Create a new Topcon Tools job: Click *Job->New Job* and type in a job name:

🖷 Topcon Tools	💥 Create a i	new job			? 🛛
Job Edit View Add	Job name		or_RTK_TopSURV	>	
New Job	Job location	Ī	C\Documents and Settings\Us	er_Name\Top	
	Created by	Г			
	Date created	F	5.01.2009 17:32:53		
	Comment				
	Configurations:		Design	•	Edit configuration
		OK		Cancel	

3. For example, let us create the coordinate file for the base RTK station in SPC-83 grid system, zone Ohio (North) using the text editor *Microsoft Notepad*, and then import this file to the Topcon Tools job:

4. Click Job->Job Configuration->Coordinate System, select Ohio (North) projection in the Projection field,

Job configuration			? 🛛
Display	Setup Conversion		_
Coordinate Systems	Designation	This (North)	T Custom
- E Units	Projection		Custom
E Save		E Europe	
E Process	Datum	E B USA	Custom
Linework		E-4 SPC83	
Adjustment	Grid->Ground	Ohio (North)	
TS Computations		UTMNorth	
Quality Control	Geoid	More	Geoids List

select Grid coordinate system in the Coordinate Type field,

click Job->Job Configuration->Units and select US Feet in the field:

Click **OK** in the *Job Configuration* window to save this configuration of the Topcon Tools job. The *Status Bar* will display the selected

projection and linear unit: USFeet DMS Grid SPC83-Ohio (North)

5. To import this file, click *Job->Import*, select the file format *Name,N,E,Z,Code*', navigate to the location of the desired text file ('Base_Coordinates.txt') and click *Open* on the *Open* dialog box:

👫 Import			? 🛛
Look in:	🗀 Exa	amples	- 🗲 🖻 🖻
Base_Coordi	nates.txt		
File name:	Base_Coord	dinates.txt	
Format name:	🗗 Name,N	I,E,Z,Code - Coordinates (*.csv) 💌
 Advanced op 	tions		
Metric unit:	De	efault (USFeet)]	-
Coordinate type:	[De	efault (Grid)]	•
Projection:	F	[Default (SPC83-Ohio (N	orth))] 💌 Custom
Datum:	NA	(D.83	v
Point type:	Cor	ntrol	
	Open		Cancel

The Points tab displays the coordinates in the desired projection and

	×	•° P	oints								
		Icon	Name	Grid Northing (Grid Easting (U	Eleval	tion (USft)	Code		Control	ΤI
lingen unite		▲	Base2	159017.389	1832308.223		796.529			Both	
innear units	-										
											_
	Re	ady					USFeet	DMS	Grid	SPC83-Ohio (North)	1.

Before importing a text coordinate file with local coordinate points, set the *Ground* coordinate system in the *Status Bar*

and perform the steps which described on

page 1-5.

After importing the local points, the *Map View* and the *Tab View* will display these points:

🗱 Map View									×
Northing, – USFeet		[A]109_LOC	[A]111_LOC						
-									
-									
5000									
-		[A]113_LO	5						
		1		1		1			Т
<u>**</u>	4500	5000	5500	6000		6500		Easting, USP	eet
× •° Points									
Icon Name	Ground Nor	thing (USft)	Ground Eastin	g (USft)	Elevatio	on (USft)	Code	Control	
▲ Base2								Both	
▲ 111_LO	=	5470.086	54	74.592		701.412		Both	
▲ 109_LO	-	5468.521	49	999.994		702.357		Both	
▲ 113_LO	-	4797.208	50	29.723		700.213		Both	
<	ш								>
Ready					USFeet	DMS	Ground	Localization	

How to See Imported Points on Google Earth

To see and check where imported points (in Grid coordinate system) is located, click *View->Google Earth:*

How to Create Background Map for Work Area

If the user has a digital image in one of the following formats: JPEG (*.jpg), Bitmap (*.bmp) or TIFF (*.tif), the user has to georeference the image to use it as background. To calculate relationship between the image and real coordinate system, the user needs to know minimum three of picture points in the desired coordinate system.

Let us create the georeferenced image for the JPG file which covers

the work area:

To georeference the image using Topcon Tools, do the following:

1. The image georeferencing parameters (the coordinate system, the coordinate type, and metric unit) are defined by the same parameters selected in the Status bar. Set the coordinate system and linear unit which will be used in the TopSURV job:

LISEeet	DMS	Grid	SPC83-Obio (North)	
051660	DHD	Gilu	5FC03-0110 (N0101)	

2. Click *View->Background images* and click the *Add Image* button in the *Background images* dialog box.

- 3. If the image is not georeferenced, Topcon Tools automatically opens the *Set Georeference* dialog box. This dialog box allows the user to mark the photo points on the image:
 - Click *Add point* in the Toolbar of this window. The cursor changes into (add point cursor).
 - Using the 'add point' cursor, identify and left-click the desired point on the image using a photographic sketch of ground point.

Type in the point name in the *Label* field, the point coordinates in the current coordinate system and click **OK** to mark this point:

Set georeference		2 🛛
Add point X Delete point(s)	X Delete all points 🛛 斗 斗 🐥 🥙	Calculate 🗖 Allow to rotate image
Pixels	S	0
550	Georeference point paramete Image point Label [CM3 Image X coordinate [108,39607 Image Y coordinate [571,12495 - Spatial point Job point page	ers ?X
	Northing (USft) [48568.092] 100 Exacting (USft) [558394.667]	Pixels
etric unit: USFeet Coordinate typ Cancel	pe: Grid Co	Apply

- Using this technique, mark other photo points.
- Click **Excalculate** button to georeference the image. After

transforming, the *Set Georeference* dialog box will display the image in the current coordinate system:

• To save the transformed image, click the *Finish* button in the *Set Georeference* dialog box. Navigate to the location in which to save the file and type in the file name in the corresponding field of the *Save* dialog box. Click *Save* to complete:

🖷 Save	2
Save in:	🗅 Examples 💽 🗲 🖻 📺
File name: PSG1	
Format name: 👘 J0	GW files (*.jgw)
 Advanced options 	
Metric unit:	[Default (USFeet)]
Angular unit:	[Default (DMS)]
Coordinate type:	[Default (Grid)]
Projection:	[Default (SPC83-Ohio (North))] 💌 Custom
Datum:	NAD83
Save	Cancel

Topcon Tools creates and saves two file types in the selected folder:

- The transformed image in the same format which was selected for the image that was not georeferenced
- ESRI World File Format

These both files are ready to be used in TopSURV. Copy the files into the Controller with TopSURV installed.

How to Create a User's Layer

To create a new layer in the current job, click Add->Layers

1. On the *General* tab of the *Layer* dialog box, enter the following general parameters for the layer:

🥏 Add Layer : Layer New Layer 👘 🕐 🔀								
General Plo	tting styles Are	a						
Name	Layer-1							
Note	L1							
Breakline Type	Breakline Type Auto							
Visible								
ОК	Cancel	Apply						

- *Name* the name of the layer.
- Note enter desired comments.
- Breakline Type- select Auto.

2. On the Plotting Styles tab, select the following parameters for the

	🧭 Add Layer	: Layer New Layer	? 🛛
layer:	General Plot Color Line Style Line Width Point Symbol	ting styles Area	- · •
	ОК	Cancel	Apply

- *Line Style* select the type of line to display line information in the layer.
- *Line Width* select a width for lines in the layer.
- Color select a color for all data (point and line) in the layer.
- Point Symbol select a symbol to represent all points in the

layer.

3. On the *Area* tab, check the *Fill Area* field to fill the areas in this layer:

🛩 Add Layer : Layer New Layer 👘 💽 🔀							
General Plo	atting styles	Area					
ОК	Cancel	Apply					

Topcon Tools allows you to create and save unlimited number of the different layers in the current job.

To view all job's layers, click *View->Layers*:

Name	Visible	Line Style	Line Width	Color	Point Symbol	Breakline Type
<i>9</i> 0	Yes		1 pt		•	Auto
<i>€</i> 11	Yes		4 pt 🗕		•	Auto
<i>∰</i> L2	Yes		6 pt		\diamond	Auto

This tab also allows one to edit the layer's parameters.

How to Create User's Codes

To create a new code in the current job, click Add->Code

1. On the *General* tab, edit the code's name and select the desired type (*Point, Line, Area, Auto*) and the layer

Properties : Code New Code ?							
General	Plotting styles	Point	Area				
Code	Code-1			_			
Name	C1						
Туре	Line						
Layer	L2			•			
ОК	Canc	el	Apply				

2. On the *Plotting styles* tab, select the line color, line style and line width. The line's plotting style can be edited for any code with or without a layer:

Properties : Code New Code							
General	Plotting styles Point Area						
Line Color	BYLAYER						
Line Style	BYLAYER						
Line Width	BYLAYER 6 pt						
	3 pt 🛛 📉 🔼						
	4 pt						
ок	5 pt						
-	6pt 4						
	7 pt						
	8 pt 📰						
	9 pt						
	10 pt						
	BYLAYER 6 pt						
	~						

3. On the *Point* tab, select the point color, point symbol. The points plotting style can be edited for any code with or without a layer

Properties	: Code New Code	? 🛛
General Plo	tting styles Point	Area
Point Color	BYLAYER	-
Point Symbol	BYLAYER ♦	•
	:	^
	÷	
OK	\$	
	× +	
	' BYLAYER ◊	

4. On the *Area* tab, select the area color. Check the *Fill Area* field, to fill the areas of this code.

Properties : Code New Code							
General Plo	otting styles Point	Area					
Area Color 🥅 Fill Area	BYLAYER	•					
OK							
	Custom BYLAYER	~					

Topcon Tools allows you to create and save unlimited number of the different codes in the current job.

To view all job's layers, click *View->Codes*. This tab also allows one to edit the code's parameters and to add desired attributes for the corresponding code.

I.,	Code	Name	Туре	Layer		Line Color	_ *	I.,	Attribute Name	Default Value
٠	Code1		Area	L1		BYLAYER				
\$	Code2	Expor Expor	t to Device t			BYLAYER				
		New C	lode							
		New A	Attribute	۱.	Inte	ger				
		Cut		Ctrl+X	Rea	l Number				
		Сору		Ctrl+C	Tex	t				
		Delete		Del	Mer	iu ii				
		Properties			Date/Time					

How to Export a Topcon Tools Job to TopSURV Job

To export the current Topcon Tools job to a Topsurv job, click *Job*-> *Export*, select the file format 'TopSURV 7 Job' and type in the name of the TopSURV job.

🚰 Export			? 🗙
Save in:	🗀 Examples	•	+ 🗈 💣
L			
File name:	from Topcon Tools		
Format name:	TopSURV 7 Job - Top	SURV Job (".tsj)	-
 Advanced op 	otions		
	Save	Cancel	

Click OK to start creating the TopSURV job.

How to Export a TopSURV Job to Controller

We have created the TopSURV job from the Topcon Tools job, which contains the control points in the different coordinate systems and the set of layers and codes. Also we created the local geoid and the georeferenced image for the work area. All these files were saved in the same folder on the computer.

If you have Windows XP operation system, make sure that *Microsoft ActiveSync* is installed on the computer and a successful computer-to-device connection is established. In this case the system tray displays

a green ActiveSync circle 🚳.

To export the created files into the Controller, close the Topcon Tools job and open Windows Explorer. Click the *Mobile Device* folder. The right-hand panel of the window displays the contents of the Topcon

To export the tsj job, open the folder TPS *TopSURV Jobs* on the Controller and copy this job to the selected folder:

Card\TPS\TopSURV\Jobs		
	×	🖻 from topcon tools.tsj
J Mobile Device	^	
🗉 🚞 Application Data		
🗉 🚞 My Documents		
🗉 🚞 Network		
🗉 🚞 profiles		
🗉 🚞 Program Files		
🗉 🧰 Recycled		
🖃 🚞 Storage Card		

To export the created geoid file, open the folder *TPS*\ *TopSURV*\ *Geoids* on the Controller and copy this file to the selected folder:

To export the created georeferenced image, open the folder $\TPS TopSURV$ on the Controller and copy these file to the selected folder.

Importing, Viewing and Editing TopSURV Job in Topcon Tools

This chapter describes how the user can use the Topcon Tools software for importing, viewing, editing a TopSURV job, and creating reports for this TopSURV job.

How to Import a TopSURV Job to Computer

After collecting field data and performing localization using control points, the closed TopSURV job is ready for import to Topcon Tools for viewing and editing.

Run Topcon Tools and create a new job. Click *Job-> Import from Device*, select mobile device and navigate to the location of "from topcon tools.tsj" file (*Storage Card/TPS/TopSURV/Jobs*).

Click *Open* in this dialog box to start import the TopSURV job to the current Topcon Tools job.

The created Topcon Tools job and the imported TopSURV job have different configurations. In process of import of the TopSURV job, Topcon Tools offeres to set the desired configuration in the *Override Job Configuration* dialog box. In this case we recommend setting the configuration used in the TopSURV job:

🛱 Ove	rride Job C	onfiguration		? 🛛
The imp configur	orted TopSUR ation as shown	V or Topcon Tools job cor below. Check the box ne	nfiguration is different from xt to the configuration ite	n the current Topcon Tools job m(s) you want to use
Option	Use	in current Job	Use	in imported Job
Projection	n 🗆	None		from topcon tools-2.tsj Localization
Linear Ur	nit 🗖	Meters	v	USFeet
Geoid				MY_GEOID
Localizat	ion 🗖		N	109:109_LOC Use:Horizontal and Vertical 111:111_LOC Use:Horizontal and
		ОК	<u> </u>	Cancel

If the geoid used in TopSURV is not presented in the current Topcon Tools job, the following message will appear:

Topcon	ı Tools
⚠	MY_GEOID : Geoid model is not in the list. Elevation calculations will work incorrectly if you do not load this geoid
	ОК

To continue import of the TopSURV job to the Topcon Tools job, click OK.

How to Add a Geoid File to Topcon Tools Job

For correct calculation of points elevations, add the geoid to the current job:

1. Click *Job->Job Configuration->Coordinate System* and click the *Geoid List* button

🚰 for_RTK_TopSURV - 1	Topcon Too			
Job Edit View Add Sele	ct Process			
New Job Open Job	Job configuration			? 🛛
Save Job	Display	Setup Conversion		
Save Job As Close Job	Coordinate Systems	Projection	None 💌	Custom
Import	Save	Datum	WGS84	Custom
Import from Device Import from Internet	Linework	🗖 Grid->Ground		
Export Export to Device	TS Computations GPS+ PostProcess	Geoid		Geoids List
Print	Quality Control	Coordinate type	Ground	
Print Preview				
Page Setup				
Job Configuration	Ctrl+F2			

2. Click the *Add* button on the *Geoid List* dialog box, select the file format '*Topcon Geoid*', navigate to the location of the local geoid ('MY_GEOID.jff') and click *Open* on the *Open* dialog box:

🚰 Geoids List				? 🗙
I., Name	Path	Minimum Longit	Maximum Long	\sim
				Add
🛱 Ор	en			? 🛛
Look in:	9	Local Disk (C:)		
	GEOID.gff			
File nam	e: MY_GE	EOID.gff		
Format r	iame: 🗗 Top	ocon Geoid (*.gff;*.jff)	>	
<	Open		Cancel	

3. The *Geoid List* dialog box displays the area covered by the geoid:

I., Name	Path	Minimum Longit	Maximum Long				
MY_GEOID	C:\MY_GEOII	0.gff 82°30'00.00000W	76°59'00.000				
	Properties : I	Regional model geoid	MY_G ? 🔀	Add			
	General			1			
	Name	MY_GEOID					
	Datum	NAD83_NO_TRANS					
-	Path	C:\MY_GEOID.gff					
	Minimum Latitude	nimum Latitude 39°59'00.00000N					
	Minimum Longitude 82°30'00.00000W						
	Maximum Latitude	41*00'00.00000N					
	Maximum Longitude	Longitude 76°59'00.00000W					
		Canad	é metu				

To add this local geoid to the current Topcon Tools job, click the *Close* button on the *Geoid List* dialog box and select this geoid from the *Geoid* list on the *Job Configuration* window:

After setting the desired geod, Topcon Tools automatically recalculate the orthometric heights of the imported job.

Note, that orthometric heights will be displayed if either Ground,

Grid, or *Datum Elevation* is selected in the *Status Bar*. In this case, the orthometric heights are displayed in the '*Elevation*' column of the *Points* tab.

Viewing Collected Data

After importing the TopSURV job to the Topcon Tools job, all collected data can be displayed in the *Tab View*, *Map View*, *Cad View* and *Google Earth View*:

The *Points* tab displays the coordinates of the points measured from the base station in the selected coordinate system, standard

deviations for each component of RTK observations, codes and layers in use:

• Po	bints							
Icon	Name	Grid Northing	Grid Easting (U	Elevati	Std Dev n (USft)	Std Dev e (USft)	Std Dev u (USft)	Std Dev Hz (USft)
•	100	159135.875	1832325.253	792.171	0.009	0.006	0.010	0.011
•	101	159215.137	1832470.546	792.457	0.014	0.009	0.018	0.016
•	102	159105.281	1832361.732	790.344	0.009	0.016	0.011	0.019
•	103	159028.391	1832273.795	789.908	0.006	0.004	0.008	0.007
•	104	158956.033	1832220.924	791.343	0.008	0.008	0.012	0.011
•	105	159047.804	1832203.630	793.490	0.013	0.008	0.013	0.015
•	106	159154.759	1832084.745	797.905	0.014	0.016	0.021	0.021
	107	100001-070	1000050 040	706 140	0.010	0.011	0.017	0.022

The *GPS Occupations* tab displays information about collected occupations (used antenna type, antenna height, duration, method of measurements, recording interval):

	🔗 GI	PS Occupatio	ns							
I	Point Name	Original	Antenna Type	Antenna H	Ant Heig	Start Time	Stop Time	Duration	Method	Interval
۲	Base2	Base2	CR-4 with C	7.000	Slant	05.05.20	05.05.200	0:52:10	Base	
0	100	100	TPSGR-3	6.004	Vertical	05.05.20	05.05.200	0:00:24	Торо	1000
0	101	101	TPSGR-3	6.004	Vertical	05.05.20	05.05.200	0:00:20	Торо	1000
0	102	102	TPSGR-3	6.004	Vertical	05.05.20	05.05.200	0:00:20	Торо	1000
0	103	103	TPSGR-3	6.004	Vertical	05.05.20	05.05.200	0:00:20	Торо	1000
0	104	104	TPSGR-3	6.004	Vertical	05.05.20	05.05.200	0:00:25	Торо	1000
0	105	105	TPSGR-3	6.004	Vertical	05.05.20	05.05.200	0:00:20	Торо	1000
0	106	106	TPSGR-3	6 004	Vertical	05.05.20	05 05 200	0.00.23	Topo	1000

The *GPS Observations* tab displays the name of point "from" and point "to", horizontal/vertical precision of the vector, components of computed vector, and information about solution type.

				🤗 GPS Obs						
I	Point F	Point To	Duration	Horizontal Pre	Vertical Pre	dN (USft)	dE (USft)	dHt (USft)	Method	Solution Type
0	Base2	100	0:00:24	0.011	0.010	118.486	17.030	2.394	RTK Topo	Fixed,Phase Diff
0,	Base2	101	0:00:20	0.016	0.018	197.748	162.323	2.680	RTK Topo	Fixed,Phase Diff
٩,	Base2	102	0:00:20	0.019	0.011	87.892	53.509	0.567	RTK Topo	Fixed,Phase Diff
0,	Base2	103	0:00:20	0.007	0.008	11.002	-34.428	0.132	RTK Topo	Fixed,Phase Diff
0,	Base2	104	0:00:25	0.011	0.012	-61.356	-87.299	1.566	RTK Topo	Fixed,Phase Diff
•	Base2	105	0:00:20	0.015	0.013	30.415	-104.593	3.714	RTK Topo	Fixed,Phase Diff
	Raca?	106	0.00.23	0.021	0.021	137 370	-223 478	8 120	DTV Topo	Fived Dhace Diff

The *Map View* is a graphical view of latitude/longitude or northing/easting of points, observations and background map

The *CAD View* is a graphical view of linework, roads, and surfaces with the associated points:

The *Google Earth* is a client application to work with a 3D map of the Earth created using live satellite imagery (a connection with the Internet is needed): MAP View CAD View

How to Estimate Precision of Data

To estimate the precision of each GPS observation of the job, it is useful to automatically mark those vectors, which have the precision worse than the values set in this job by the user. The user can set threshold values in the *GPS Obs Precisions* tab (*Job Configuration -> Quality Control*) and activate this test in the *Automatic Tests* tab:

After that Topcon Tools will automatically highlight in red the 'bad' GPS observation(s):

Viewing and Editing Localization

If localization was performed in TopSURV, the user can see (in the current Topcon Tools job) the localization parameters and pair points

which were used in localization. To open the *Localization dialog* box, click *Process->Localization:*

			WGS Point	Local Point	Use	N Residual (USft)	E Re Rotation]25°32'20.8195
			▲ 109	109_LOC	Horizontal and V	0.002	Scale	1.0001628626
			▲ 111	111_LOC	Horizontal and V	-0.017	Deflection North	0.0018 7082
ocess			▲ 113	113_LOC	Horizontal and V	0.014	Deflection East	0*00'59.4940
Adjustment	F8						Origin Lat	40*06*11.09365N
Compute Coordinates							Origin Lon	82°59'16.23281W
Localization	Shift+F8						Origin Ell. H (USft)	789.884
Loop Closures	Ctrl+L						Origin Northing (USft)	5468.521
Process Properties	Alt+Ctrl+P						Origin Easting (USft)	4999.994
		_					Origin H (USft)	702.357
			<	1.			🕞 🦵 Keep Scale 1.000	

The *Localization* window allows one to add the pair points for calculating the localization parameters:

• before adding a new pair, be sure that the *Points* tab contains the desired point(s) with coordinates in the both coordinate systems (*Ground/Localization* and *Grid/Datum*). If needed, to create such

a point you can use the option Add > Doint (<i>,</i>	Add		`
a point, you can use the option Add -> Point (Point	Ctrl+.)

and type in the desired coordinates in the corresponding

coordinate system:

Add Point : Point User1								
Quality control	Photo Notes							
Ground	Coordinates							
Ground Northing (m)	1563.043							
Ground Easting (m)	213 708							

- Click Add Point in the Localization window.
- Select the desired point from the *WGS Point* list:

🀔 Localizat	ion
WGS Point	
🔺 109	
🔺 111	
🔺 113	
101	-
101	^
101_LOC	
102	

- Select the desired point from the *Local Point* list:
- 🖇 Localization WGS Point Local Point A 109 109 LOC A 111 111_LOC A 113 113_LOC A 101 103 100 101
- Click to calculate localization parameters using new Compute parameters pair points.

Editing Antenna Height

Topcon Tools allows one to edit the Antenna Height and/or Antenna Height Method and/or Antenna Type columns as needed. For multiple points:

101

102

103

104

105

106

107

P... Original ...

101

102

103

104

105

106

107

105

106

107

• in the GPS Occupations tab press Shift (and/or Ctrl) and highlight the desired

> I... 101

102

103

104

105

106

107

I... 🔺

101

102

103

104

105

106

107

0,0,0,0,0,0,0

0 105

106

107

•	
points:	
F	

•	click a	point:
		1

				😤 GPS Occu	pations
I		P	Original	Antenna T	Antenna Hei
0	101		101	TPSGR-3	6.004
0	102		102	TPSGR-3	7.7777
0	103		103	TPSGR-3	6.004
0	104		104	TPSGR-3	6.004

TPSGR-3

TPSGR-3

TPSGR-3

🔗 GPS Occupations P... Original ... Antenna T... Antenna Hei...

🔗 GPS Occupations

Antenna T... Antenna Hei... TPSGR-3

6.00393

6.004

6.00

6.004

6.004

6.004

6.004

6.004

6.004

TPSGR-3

• type in a new height:

		🔗 GPS Occupations			
I		P	Original	Antenna T	Antenna Hei
0	101		101	TP5GR-3	6.004
0	102		102	TPSGR-3	7.778
0	103		103	TPSGR-3	7.778
0	104		104	TPSGR-3	6.004
0	105		105	TPSGR-3	6.004
0	106		106	TPSGR-3	7.778
0	107		107	TPSGR-3	7.778

• press *Enter*:

After this updating, you need to recalculate the coordinates of the network.

How to Recalculate the Coordinates

To recalculate the coordinates of the given RTK network with any modification, click the *Process -> Compute coordinates*.

Note that if the base station antenna does not have information about

antenna type, antenna height and antenna height method, the phase center coordinates of this antenna will be used to compute the coordinates of all points in this network.

Reporting Data

To create a report in *Microsoft Excel* for all GPS observations of the given job, take the following steps:

• Click Report-> Report Configuration

Report		
Qualit	y Control	Ctrl+5
Points	Ctrl+4	
Locali	Ctrl+3	
GPS C	Ctrl+2	
Adjus	Ctrl+1	
Repor	t Configuration	F9

• Select the *GPS observations* report in the *Report* list and *Microsoft Excel* in the *Report format* field:

- Click OK to save that report configuration.
- To create the corresponding report, click *Report-> GPS Observations*. The following report displays

Г		Δ	В	0	D	F	F	G	
ľ	1			Ū,		L		<u> </u>	
	2		'						
	3	TOPCON							
	4	Project Sum	nmary						
	5	5							
$\left \right $	ы	Project nam	ne: from topc	on tools.ttp					
	/	Surveyor:							
	8	Comment							
	9	Linear unit	USFeet						
$\left \right $	10				05	C Observations			
ł	11	Nomo	AN /UC#Y			Upricental Provision (UCff)	Vortical Drasisian (UCff)		
ł	12	Ranne Roco2-100	110 676	16 260	2 204	nonzontal Precision (OSIC)	venucal Frecision (USIC)		
ł	1.0	Bace2-100	100.649	161.000	2.034	0.011	0.01		
ł	14	Bace2=101	99 195	69.016	2.075	0.010	0.010		
ł	16	Dase2 102	10 000	-94 497	0.007	0.013	0.011		
ł	17	Dase2 100 Pace2=104	61.003	-04.407 08.060	1.666	0.007	0.000		
ł	18	Bace2-104	20 820	-104 767	9 719	0.011	0.012		
ł	19	Bace2=100	196 115	-224 222	9.197	0.013	0.013		
ł	20	Bace2=107	212.052	-266 169	5 201	0.021	0.027		
ł	20	Dase2 107	210.000	-200.100	0.001	0.022	0.017		
ł	21	Bace2 100	210.047	202.300	4 027	0.010	0.013		
ł	22	Bace2-103	417 109	-199 324	9.007	0.024	0.019		
ł	20	Bace2=111	666.924	129.65	2 004	0.014	0.011		
ł	24	Dase2 111	25.026	-197 970	2.304	0.010	0.011		
ł	26	Bace2-113	-232 026	27.073	1 752	0.012	0.011		
ł	20	Bace2-114	-97 491	-122 118	2 9 4 2	0.017	0.011		
ł	28	D0362-114	-37.431	-122.110	2.342	0.017	0.021		
н									

Export to Coordinate File

To export the coordinates of the measured RTK points to a text file format, do the following:

• Select the desired linear unit (US Feet) and coordinate system

(Ground/Localization) in the Status Bar USFeet DMS Ground Localization

• Click *Job-> Export*, select the file format '*Name*,*N*,*E*,*Z*,*Code*', type in the name of the created file and click OK:

🚰 Export		?	×
Save in: 📔	Examples	- 🗢 🖿 (Ť
File name: RTK_	POINTS		
Format name: 👘 Na	me,N,E,Z,Code - Coordinates	(*.csv)	•
 Advanced options 			
			_
Metric unit:	[Default (USFeet)]		•
Coordinate type:	[Default (Ground or Localiza	tion)]	•
Coordinate system:	None		
Save		Cancel	

The created file will have the following type:

File	Edit	Options	Help
10	0,51	18.280	,5171.041,700.819,
10	1,51	28.082	,5336.271,701.140,NAIL
10	2,50	75.055	,5191.009,699.005,OAK
10	3,50	42.959	,5078.684,698.552,NAIL
10	4,50	00.020	,5000.016,699.978,NAIL
10	5,50	90.421	,5023.473,702.112,NAIL
10	6,52	37.847	,4961.485,706.483,NAIL
10	7 59	91 BJi5	አዒሪና ይአአ 783 799 MH

Notes:

Topcon Positioning Systems, Inc.7400 National Drive, Livermore, CA 94550800·443·4567www.topconpositioning.com

Topcon Tools Processing RTK Data Application Guide P/N: 7010-0928 Rev A 04/09 ©2009 Topcon Corporation All rights reserved. No unauthorized duplication.